
Examiners’ Report: Final Honour School of Mathematics

Part C Trinity Term 2019

November 8, 2019

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1, page 1.

• Numbers of vivas and effects of vivas on classes of result.
As in previous years there were no vivas conducted for the FHS of Mathematics Part C.

• Marking of scripts.
The dissertations and mini-projects were double marked. The remaining scripts were
all single marked according to a pre-agreed marking scheme which was very closely
adhered to. For details of the extensive checking process, see Part II, Section A.

• Numbers taking each paper.
See Table 7 on page 9.

Table 1: Numbers in each class

Number Percentages %
2019 (2018) (2017) (2016) (2015) 2019 (2018) (2017) (2016) (2015)

I 58 (53) (48) (44) (45) 57.43 (56.99) (57.14) (50.57) (46.39)
II.1 40 (26) (23) (31) (39) 39.6 (27.96) (27.38) (35.63) (40.21)
II.2 2 (13) (12) (9) (13) 1.98 (13.98) (14.29) (10.34) (13.4)
III 1 (1) (1) (3) (0) 0.99 (1.08) (1.19) (3.45) (0)
F 0 (0) (0) (0) (0) 0 (0) (0) (0) (0)

Total 101 (93) (84) (87) (97) 100 (100) (100) (100) (100)
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B. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

C. Notice of examination conventions for candidates

The first notice to candidates was issued on 12th February 2019 and the second notice on
1st May 2019. These contain details of the examinations and assessments.

All notices and the examination conventions for 2019 examinations are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments.

Part II

A. General Comments on the Examination

The examiners would like to thank in particular Gemma Proctor, Waldemar Schlackow
and Charlotte Turner-Smith for their commitment and dedication in running the exami-
nation systems. We would also like to thank Nia Roderick, and the rest of the Academic
Administration Team for all their work during the busy exam period.

We also thank the assessors for their work in setting questions on their own courses, and
for their assistance in carefully checking the draft questions of other assessors, and also to
the many people who acted as assessors for dissertations. We are particularly grateful to
those—this year the great majority—who abided by the specified deadlines and responded
promptly to queries. This level of cooperation contributed in a significant way to the smooth
running of what is of necessity a complicated process.

The internal examiners would like to thank the external examiners Professor Richard Jozsa
and Dr Jonathan Woolf for their prompt and careful reading of the draft papers and for
their valuable input during the examiners’ meeting.

Timetable

The examinations began on Monday 3rd June and finished on Wednesday 19th June.

Mitigating Circumstances Notice to Examiners and other special circumstances

A subset of the board (the ’Mitigating Circumstances Panel’) had a preliminary meeting
to discuss the individual notices to examiners at Part C. There were 3 notices, which the
panel classified in bands 1, 2, 3 as appropriate. The full board of examiners considered
the 3 cases in the final meeting. All candidates with certain conditions (such as dyslexia,
dyspraxia, etc.) were given special consideration in the conditions and/or time allowed for
their papers, as agreed by the Proctors. Each such paper was clearly labelled to assist the
assessors and examiners in awarding fair marks.
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Setting and checking of papers and marks processing

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

The internal examiners met in early January to consider the questions on Michaelmas Term
courses, and changes and corrections were agreed with the lecturers where necessary. The
revised questions were then sent to the external examiners. Feedback from external examin-
ers was given to examiners, and to the relevant assessor for each paper for a response. The
internal examiners met a second time late in Hilary Term to consider the external examin-
ers’ comments and assessor responses (and also Michaelmas Term course papers submitted
late). The cycle was repeated for the Hilary Term courses, with two examiners’ meetings in
the Easter Vacation; the schedule here was much tighter. Following the preparation of the
Camera Ready Copy of the papers as finally approved, each assessor signed off their paper
in time for submission to Examination Schools in week 1 of Trinity Term.

A team of graduate checkers, under the supervision of Gemma Proctor, Charlotte Turner-
Smith and Hannah Harrison, sorted all the marked scripts for each paper of this examina-
tion, carefully cross checking against the mark scheme to spot any unmarked questions or
parts of questions, addition errors or wrongly recorded marks. Also sub-totals for each part
were checked against the mark scheme, noting correct addition. In this way a number of
errors were corrected, each change was signed by one of the examiners who were present
throughout the process. A check-sum is also carried out to ensure that marks entered into
the database are correctly read and transposed from the marks sheets.

Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
C, the MPLS Divisional averages, and the distribution of classifications achieved by the
same group of students at Part B.

The examiners followed established practice in determining the University standardised
marks (USMs) reported to candidates. This leads to classifications awarded at Part C
broadly reflecting the overall distribution of classifications which had been achieved the
previous year by the same students.

We outline the principles of the calibration method.

The Department’s algorithm to assign USMs in Part C was used in the same way as last
year for each unit assessed by means of a traditional written examination. Papers for which
USMs are directly assigned by the markers or provided by another board of examiners are
excluded from consideration. Calibration uses data on the Part B classification of candi-
dates in Mathematics and Mathematics & Statistics (Mathematics & Computer Science and
Mathematics & Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper: N1, N2 and N3

are, respectively, the number of candidates taking the paper who achieved in Part B overall
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average USMs in the ranges [70, 100], [60, 69] and [0, 59], respectively.

The algorithm converts raw marks to USMs for each paper separately (in each case, the
raw marks are initially out of 50, but are scaled to marks out of 100). For each paper,
the algorithm sets up a map R → U (R = raw, U = USM) which is piecewise linear. The
graph of the map consists of four line segments: by default these join the points (100, 100),
P1 = (C1, 72), P2 = (C2, 57), P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by
the requirement that the proportion of I and II.1 candidates in Part B, as given by N1 and
N2, is the same as the I and II.1 proportion of USMs achieved on the paper. The value of
C3 is set by the requirement that P2P3 continued would intersect the U axis at U0 = 10.
Here the default choice of corners is given by U -values of 72, 57 and 37 to avoid distorting
nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters provide the starting
point for the determination of USMs. The examiners have scope to make changes, usually
by adjusting the position of the corner points P1, P2, P3 by hand, so as to alter the map
raw→ USM, to remedy any perceived unfairness introduced by the algorithm, in particular
in cases where the number of candidates is small. They also have the option to introduce
additional corners.

Table 2 on page 5 gives the final positions of the corners of the piecewise linear maps used
to determine USMs from raw marks. For each paper, P1, P2, P3 are the (possibly adjusted)
positions of the corners above, which together with the end points (100, 100) and (0, 0)
determine the piecewise linear map raw → USM. The entries N1, N2, N3 give the number
of incoming firsts, II.1s, and II.2s and below respectively from Part B for that paper, which
are used by the algorithm to determine the positions of P1, P2, P3.

Following customary practice, a preliminary, non-plenary, meeting of examiners was held
two days ahead of the plenary examiners’ meeting to assess the results produced by the
algorithm alongside the reports from assessors. Adjustments were made to the default
settings as appropriate, paying particular attention to borderlines and to raw marks which
were either very high or very low. These revised USM maps provided the starting point for
a review of the scalings, paper by paper, by the full board of examiners.
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Table 2: Position of corners of piecewise linear function

Paper P1 P2 P3 Additional corners N1 N2 N3

C1.1 (11, 37) (29, 57) (41, 70) 1 6 2
C1.2 (7, 37) (26, 57) (36, 70) 1 5 2
C1.3 (10, 37) (27.3, 57) (40.8, 72) 5 10 1
C1.4 (9.65, 37) (20, 57) (37.8, 72) 7 7 2
C2.1 (11.71, 37) (20.4, 57) (30, 72) 11 1 0
C2.2 (10, 37) (25, 57) (34.8, 72) 15 3 1
C2.3 (7.35, 37) (21, 57) (33.8, 72) 3 1 0
C2.4 (13, 37) (26.3, 57) (39.8, 72) 7 1 2
C2.5 (14.59, 37) (23, 57) (31, 72) 6 1 1
C2.6 (8.44, 37) (14.7, 72) (21, 70) 9 0 0
C2.7 (14, 37) (26.8, 57) (32.8, 70) 17 4 2
C3.1 (5, 37) (17, 57) (28, 72) 11 1 0
C3.2 (12.12, 37) (21.1, 57) (30, 72) 5 3 2
C3.3 (14.01, 37) (20, 57) (37, 72) 4 4 1
C3.4 (8.15, 37) (19, 57) (38.2,72) 14 1 0
C3.5 (11, 37) (25.2, 57) (34.2, 72) 6 3 1
C3.7 (8.1, 37) (18, 57) (33.6, 72) 10 5 0
C3.8 (8, 37) (17, 57) (37, 72) 11 6 0
C3.10 (8, 37) (14, 57) (27, 72) 9 6 0
C4.1 (9, 37) (15, 57) (28, 72) 9 3 0
C4.3 (14.82, 37) (23, 57) (31.8, 72) 3 1 0
C4.4 (5, 37) (15, 57) (23, 72) 0 2 0
C4.6 (13.04, 37) (22.7, 57) (37, 72) 2 0 0
C4.8 (12.35, 37) (21.5, 57) (30.5, 72) 1 2 0
C5.1 (5.1, 37) (18, 57) (32, 72) 5 15 2
C5.2 (6.08, 37) (23, 57) (32, 72) 5 11 1
C5.5 (8.9, 37) (15.5, 57) (38, 72) 9 21 1
C5.6 (9, 37) (18.3, 57) (41, 72) 8 14 1
C5.7 (7.52, 37) (22, 57) (42, 72) 6 11 0
C5.9 (9.88, 37) (22.5, 57) (34, 72) 2 7 1
C5.11 (7.81, 37) (20, 57) (40.6, 72) 9 16 1
C5.12 (9.70, 37) (20, 57) (42.4, 72) 4 16 1
C6.1 (11.37, 37) (19.8, 57) (40.8, 72) 5 13 3
C6.2 (8.21, 37) (14.3, 57) (42.8, 72) 3 11 1
C6.3 (12, 37) (28, 57) (38, 72) 3 0 3
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Paper P1 P2 P3 Additional corners N1 N2 N3

C6.4 (17.08, 37) (28, 57) (35, 70) 2 4 1
C7.4 (12, 37) (0, 0) (42, 72) 3 1 0
C7.5 (19.81, 37) (30, 57) (40, 72) 1 1 0
C7.6 (10, 37) (18, 57) (31, 72) 0 1 0
C8.1 (7.81, 37) (16, 57) (30, 72) 13 1 0
C8.2 (8.55, 37) (20, 57) (35, 72) 11 1 0
C8.3 (9.30, 37) (20, 57) (38, 72) 10 19 1
C8.4 (7, 37) (15, 57) (34, 72) 6 16 1
SC1 (14.07, 37) (24.5,57) (44,72) 7 29 2
SC2 (12, 37) (23, 57) (43, 71) 12 21 3
SC4 (10, 37) (16, 57) (40.6, 72) 12 13 2
SC5 (8.38, 37) (23, 57) (41.6, 72) 7 10 0
SC6 (10.57, 37) (18.4, 57) (36.4, 72) 6 13 2
SC7 (11.77, 37) (20.5, 57) (40, 72) 5 8 0
SC9 (11.48, 37) (20, 57) (35, 72) 2 4 0

Table 6 on page 8 gives the rank of candidates and the number and percentage of candidates
attaining this or a greater (weighted) average USM.
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Table 4: Percentile table for overall USMs

Av USM Rank Candidates with this USM or above %

86 1 1 0.99
84 2 3 2.97
82 4 6 5.94
80 7 9 8.91
79 10 14 13.86
78 15 15 14.85
77 16 20 19.8
76 21 23 22.77
75 24 31 30.69
74 32 39 38.61
73 40 45 44.55
72 46 46 45.54
71 47 52 51.49
70 53 57 56.44
69 58 64 63.37
68 65 69 68.32
67 70 75 74.26
66 76 80 79.21
65 81 86 85.15
64 87 89 88.12
63 90 92 91.09
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Av USM Rank Candidates with this USM or above %

62 93 94 93.07
61 95 95 94.06
60 96 98 97.03
59 99 99 98.02
55 100 100 99.01
48 101 101 100

B. Equality and Diversity issues and breakdown of the results by gender

Table 6: Breakdown of results by gender

Class Number

2019 2018 2017
Female Male Total Female Male Total Female Male Total

I 8 50 58 6 47 53 11 37 48
II.1 9 31 40 7 19 26 5 18 23
II.2 0 2 2 3 10 13 2 10 12
III 0 1 1 1 0 1 0 1 1
F 0 0 0 0 0 0 0 0 0

Total 17 84 101 17 76 93 18 66 84

Class Percentage

2019 2018 2017
Female Male Total Female Male Total Female Male Total

I 47.06 59.52 57.43 35.29 61.84 56.99 61.11 56.06 57.14
II.1 52.94 36.9 39.6 41.18 25 27.96 27.78 27.27 27.38
II.2 0 2.38 1.98 17.65 13.16 13.98 11.11 15.15 14.29
III 0 1.19 0.99 5.88 0 1.08 0 1.52 1.19
F 0 0 0 0 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100
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C. Detailed numbers on candidates’ performance in each part of the exam

Data for papers with fewer than six candidates are not included.

Table 7: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

C1.1 9 39.44 10.37 76 19.77
C1.2 8 34.38 11.16 71.12 17.14
C1.3 16 36.44 4.99 67.94 7.23
C1.4 12 27.08 7.69 62.33 7.56
C2.1 12 32.33 7.64 74.92 11.07
C2.2 20 38.4 4.89 78.9 8.63
C2.3 4 - - - -
C2.4 10 36.8 10.49 72 16.4
C2.5 8 32.25 5.47 73 8.83
C2.6 10 27.7 7.39 76.4 8.67
C2.7 24 35 5.35 74.71 10.02
C3.1 13 26 8 69.38 10.24
C3.2 10 27.8 8.09 67.5 12.62
C3.3 10 34.3 7.2 72.2 9.93
C3.4 15 39.2 6.5 77.2 8.58
C3.5 10 36.3 9.87 76.2 16.72
C3.7 15 31.73 7.17 71.76 8.75
C3.8 17 33.18 9.1 71.12 9.85
C3.9 4 - - 74.25 6.98
C3.10 15 23.6 9.42 65.93 17.24
C4.1 11 22.91 7.45 64.64 11.55
C4.3 4 - - - -
C4.4 2 - - - -
C4.6 2 - - - -
C4.8 3 - - - -
C5.1 22 23.73 8.05 62.95 10.16
C5.2 17 28.41 8.66 66.71 12.87
C5.4 28 - - 69.64 6.98
C5.5 30 31.23 7.05 68.23 6.49
C5.6 21 36.57 9.09 73.57 11.86
C5.7 17 37.82 8.12 70.88 10.57
C5.9 10 28.2 9 64.4 13.77
C5.10 15 - - 63.86 9.50
C5.11 26 32.96 6.51 66.69 5.78
C5.12 20 33.65 7.42 66 6.91
C6.1 19 32.21 6.88 66.42 6.87
C6.2 14 30.79 8.45 66.43 6.25
C6.3 6 34.67 10.37 69.67 18.01
C6.4 6 39.5 5.15 79 10.33
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Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

C6.5 11 - - 68.45 7.32
C7.4 3 - - - -
C7.5 2 - - - -
C7.6 1 - - - -
C8.1 11 27.64 4.97 69.91 5.65
C8.2 9 32.11 7.27 69.89 8.87
C8.3 30 33.97 6.07 69.83 7.18
C8.4 23 28.3 7.52 68.22 8.24
SC1 25 39.88 5.99 70.96 8.37
SC2 16 41.19 6.77 73.75 10.22
SC4 6 34.67 7.2 70.5 9.01
SC5 4 - - - -
SC6 5 - - - -
SC7 1 - - - -
SC9 4 - - - -
SC10 2 - - - -
CCS1 3 - - - -
CCS2 5 - - - -
CCS3 1 - - - -
CCD 62 - - 74.09 6.96
COD 2 - - 81 5.65

The tables that follow give the question statistics for each paper for Mathematics candi-
dates. Data for papers with fewer than six candidates are not included.

Paper C1.1: Model Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.66 17.6 8.98 5 1
Q2 21.14 21.14 4.18 7 0
Q3 17.85 19.83 7.55 6 1

Paper C1.2: Gödel’s Incompleteness Theorems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.14 20.14 4.33 7 0
Q2 14.14 14.14 6.46 7 0
Q3 17.5 17.5 6.36 2 0
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Paper C1.3: Analytic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.8 14.25 6.37 4 1
Q2 19.81 19.81 2.94 16 0
Q3 17.41 17.41 2.67 12 0

Paper C1.4: Axiomatic Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.41 14.41 4.14 12 0
Q2 12.66 12.66 6.06 12 0
Q3 - - - - -

Paper C2.1: Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.54 18.54 4.45 11 0
Q2 13.83 13.83 3.78 12 0
Q3 18 18 - 1 0

Paper C2.2: Homological Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.06 19.06 2.76 15 0
Q2 19.11 19.11 2.71 17 0
Q3 19.62 19.62 4.24 8 0

Paper C2.3: Representation Theory of Semisimple Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 23 23 2.82 2 0
Q2 16 16 - 1 0
Q3 15.5 15.5 1 4 0

Paper C2.4: Infinite Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.6 18.6 6.31 10 0
Q2 16.25 16.25 6.34 4 0
Q3 19.5 19.5 3.20 6 0
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Paper C2.5: Non-Commutative Rings

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.25 16.25 1.83 8 0
Q2 14.85 14.85 3.89 7 0
Q3 24 24 - 1 0

Paper C2.6: Introduction to Schemes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.7 16.7 4.00 10 0
Q2 8.5 8.42 3.07 7 1
Q3 17 17 5.19 3 0

Paper C2.7: Category Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.95 16.68 3.68 19 2
Q2 16.35 16.35 3.20 14 0
Q3 19.6 19.6 3.50 15 2

Paper C3.1: Algebraic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.6 15.6 6.63 10 0
Q2 10.57 10.57 4.03 7 0
Q3 12 12 2.29 9 0

Paper C3.2: Geometric Group Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16 17.33 5.84 9 1
Q2 11.16 11.16 7.27 6 0
Q3 8.85 11 4.22 5 2

Paper C3.3: Differentiable Manifolds

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.55 18.55 3.08 9 0
Q2 17.33 17.33 5.56 9 0
Q3 10 10 2.58 2 2
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Paper C3.4: Algebraic Geometry

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.30 19.30 2.65 13 0
Q2 19.66 19.66 7.28 6 0
Q3 19.25 19.90 3.30 11 1

Paper C3.5: Lie Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.12 17.12 4.48 8 0
Q2 18.84 18.84 6.73 10 0
Q3 14 21 9.05 2 2

Paper C3.7: Elliptic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.30 14.30 2.78 13 0
Q2 14.55 16.24 5.63 7 2
Q3 17.5 17.5 5.70 10 0

Paper C3.8: Analytic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.75 20.75 2.87 4 0
Q2 14.8 15.5 6.03 14 1
Q3 16.5 16.5 4 16 0

Paper C3.10: Additive and Combinatorial Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9 9.81 6.39 11 1
Q2 11.28 11.83 3.94 6 1
Q3 12.64 13.46 6.23 13 1

Paper C4.1: Further Functional Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 8 8.85 4.27 7 1
Q2 13.55 13.55 4.50 9 0
Q3 9.33 11.33 4.71 6 3
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Paper C4.3: Functional Analytical Methods for PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18 3.91 4 0
Q2 14.75 14.75 0.95 4 0

Paper C4.4: Hyperbolic Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 6.5 6.5 3.53 2 0
Q2 8.5 8.5 0.70 2 0
Q3 4 - - 0 1

Paper C4.6: Fixed Point Methods for Nonlinear PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.5 12.5 4.94 2 0
Q2 15.5 15.5 0.70 2 0

Paper C4.8: Complex Analysis: Conformal Maps and Geometry

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.33 10.33 1.15 3 0
Q2 15 15 1.41 2 0
Q3 17 17 - 1 0

Paper C5.1: Solid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.90 12.14 4.68 21 1
Q2 5.44 6.33 2.69 3 6
Q3 12.4 12.4 4.91 20 0

Paper C5.2: Elasticity and Plasticity

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 8.62 8.62 5.09 8 0
Q2 16.76 16.76 3.49 13 0
Q3 14.14 15.07 6.06 13 1
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Paper C5.5: Perturbation Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.25 17.25 5.35 27 0
Q2 14.84 14.84 3.58 26 0
Q3 11.87 12.14 2.47 7 1

Paper C5.6: Applied Complex Variables

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.87 18.87 4.17 16 0
Q2 13.26 16.09 7.30 11 4
Q3 19.26 19.26 5.36 15 0

Paper C5.7: Topics in Fluid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.4 17.4 4.85 15 0
Q2 20.17 20.17 3.94 17 0
Q3 13.33 19.5 11.59 2 1

Paper C5.9: Mathematical Mechanical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.83 18.83 2.56 6 0
Q2 9.6 9.6 4.08 10 0
Q3 14.8 18.25 11.73 4 1

Paper C5.11: Mathematical Geoscience

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.72 16.72 3.39 22 0
Q2 14.95 15.33 4.61 21 1
Q3 17.7 18.55 3.94 9 1

Paper C5.12: Mathematical Physiology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.37 16.37 4.27 8 0
Q2 16.88 16.88 3.89 18 0
Q3 17 18.30 5.96 13 1
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Paper C6.1: Numerical Linear Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.11 13.31 4.34 16 1
Q2 18.07 18.07 3.14 14 0
Q3 16.88 18.25 5.15 8 1

Paper C6.2: Continuous Optimization

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16 16 3.58 13 0
Q2 15.5 17.71 7.55 7 1
Q3 12.37 12.37 5.97 8 0

Paper C6.3: Approximation of Functions

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.83 17.83 5.26 6 0
Q2 20.66 20.66 4.16 3 0
Q3 13 13 4.35 3 0

Paper C6.4: Finite Element Methods for Partial Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13 20 8.28 2 2
Q2 21.5 21.5 3.50 6 0
Q3 15.6 17 5.77 4 1

Paper C7.4: Introduction to Quantum Information

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 23 23 - 1 0
Q2 21 20 5.29 2 1
Q3 23 23 2.64 3 0

Paper C7.5: General Relativity I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18 1 0
Q2 20.5 20.5 3.53 2 0
Q3 18 18 1 0
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Paper C7.6: Relativity II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q2 22 22 - 1 0
Q3 14 14 - 1 0

Paper C8.1: Stochastic Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.18 16.18 3.91 11 0
Q2 11.33 12.12 3.42 8 1
Q3 8.4 9.66 2.30 3 2

Paper C8.2: Stochastic Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.77 17.77 2.68 9 0
Q2 14.12 14.12 5.86 8 0
Q3 16 16 - 1 0

Paper C8.3: Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.07 17.11 3.49 26 1
Q2 16.87 16.87 2.96 16 0
Q3 16.88 16.88 4.01 18 0

Paper C8.4: Probabilistic Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.90 11.90 5.20 21 0
Q2 16.63 16.63 3.68 22 0
Q3 10.5 11.66 4.50 3 1

Paper SC1: Stochastic Models in Mathematical Genetics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16 16 5.90 14 0
Q2 22.60 22.60 1.64 23 0
Q3 19.46 19.46 2.66 13 0
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Paper SC2: Probability and Statistics for Network Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.57 19.57 3.52 14 0
Q2 16.12 17.28 5.64 7 1
Q3 24 24 0.89 11 0

Paper SC4: Statistical Data Mining and Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.16 17.16 5.49 6 0
Q3 17.5 17.5 2.88 6 0

Paper SC5: Advanced Simulation Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17 17 7.74 4 0
Q2 19.25 19.25 3.86 4 0

Paper SC6: Graphical Models

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.75 14 3.30 3 1
Q2 17 17 4.39 4 0
Q3 12.66 12.66 3.05 3 0

Paper SC7: Bayes Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11 11 - 1 0
Q2 18 18 - 1 0
Q3 5 - - 0 1

Paper SC9: Interacting Particle Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15 15 0.81 4 0
Q2 14.5 14.5 3.10 4 0
Q3 6 - - 0 1
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Paper SC10: Algorithmic Foundations of Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.5 18.5 0.70 2 0
Q2 24 24 0 2 0

D. Recommendations for Next Year’s Examiners and Teaching Committee

None

E. Comments on papers and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced
with only minimal editing. Some data to be found in Section C above have been omitted.

C1.1: Model Theory

The three questions were chosen about evenly.

1) There was a bit of a dichotomy here. About half clearly saw the need for the upwards
Loewenheim-Skolem theorem in (a), for the the preservation of universal sentences under
substructures in (b) and of existential sentences under going to superstructures in (c), as
well as the fact that a complete theory of a finite structure determines a cardinality. These
answers were generally good. Several did not attempt part (c) or even part (b), which
covers basic material around the definition of a structure.

2) Generally people did quite well, showing a clear understanding of the model theory. Nor
did the simple algebra faze anyone; most replies constructed isomorphisms for models of α
and β and then putting them together in the case of C. In several cases the construction
was unnecessarily elaborate (repeating back and forth constructions not needed here), but
no points were taken off for this. Many lost one point for a slightly incorrect statement of
the Los-Vaught test. A number did not correctly give the theory of C, for instance asserting
that σ along with the negations of α, β suffices, not realising that each possibility must be
asserted to occur infinitely often.

3) Most stated the omitting types theorem correctly, and showed a good understanding in
parts (b) and (c). Part (d) gave more trouble; many realised that an ℵ1-categorical but not
ℵ0-categorical is needed and explained why, but could not think of one.
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C1.2: Gödel’s Incompleteness Theorems

Among the weaker candidates, a few used the wrong definition of what it is for a set to
be expressed by a formula, or for a set to be enumerated by a formula in a formal system.
Some candidates lost a mark by using without argument a result from the course not given
in the preamble or allowed by being stated clearly in 2(c) and 3(c), for example citing P6,
where what’s given, by (iii), is that Pr(v1) is a provability predicate for PA (needed to say
something like: “P4 by P1 and P2, P5 by P4 and P2, and P6 by P5 and P3”).

Q1 is on arithmetization of syntax and the first incompleteness theorem. In part (a) the
weaker candidates did not discuss the fact that Tm(v1) and Fm(v1) are Σ1, and how, despite
this fact, {n : PA ` En is expressible by a Σ1-formula, and omitted to say anything about
the role played by the arithmetization of v2 ≺v1

v3. Part (b) called for a proof of the second

half of the First Incompleteness Theorem, so it was bookwork, but with the twist that it
was to be proved from the provability of the diagonal equivalence, while in the lectures it
was proved from the expressibility of {n : PA ` En[n]}, and one candidate on autopilot
gave that proof. Part (c) covered the first half of the First Incompleteness Theorem, though
with the twist of going directly to ω-incompleteness. Several candidates streamlined the
bookwork by going directly from the supposition that PA ` G to PA ` Pr(pGq) since it
was given P (v1) is a provability predicate (which had not been established yet when that
result was proved in the lectures). Part (c) was a new result, but made very manageable
by the hint, and candidates who weren’t frightened off by not having seen this result before
did well with it.

Q2 is on the Second Incompleteness Theorem and the background to Rosser’s Theorem,
though not on Rosser’s Theorem itself. There were some excellent answers, but overall
candidates did markedly less well on this question than on Q1, despite the fact that this
question was very close to bookwork, with an average mark of 13.6. Part (a) called for
a proof of the Second Incompleteness Theorem for PA, i.e. for any sentence X, PA 0
∼Pr(pXq), in the equivalent form PA ∪ {Pr(pXq)} is consistent, a form of equivalence
by propositional logic much used in the course (as well as in proving the Completeness
Theorem for First-Order Logic, a prerequisite to the course). Part (b) was problem 2(c) on
Problem sheet 5, and received a number of excellent answers, but a number of candidates
struggled with it, some because they weren’t working with the right definition of what it
is for a formula to express a set. Part (c) is an immediate consequence of the Separation
Lemma, which a number of candidates realized, but some didn’t (despite the fact that
this fact entered into the solution of problem 2(d) on Problem sheet 5). Part (d) is not
bookwork. Some candidates made progress, while a number got nowhere. It follows from

propositional logic by taking PrPA∪{Pr(p0=0′q)}(v1) to be Pr((pPr(p0 = 0′q) ⊃q ∗ v1 ∗ p)q),

which is justified by the Deduction Theorem for first-order logic and given (iii). One mistake
which several candidates made was to take it that Pr(v1) is a proof predicate for S. Some
candidates included claims that contradict the Second Incompleteness Theorem.

Q3 is on Löb’s Theorem and the Fixed Point Theorem for Provability Logic. Part (a)
called for a proof of Löb’s Theorem, in the context of determining the truth or falsity the
Henkin sentence (“this sentence is provable”), which is how Löb’s Theorem was introduced
in the lectures (and historically). Part (b) tested the point, stressed in the lectures, that
the inference from S ` A to S ` B, as in the case of Löb’s Theorem, does not thereby
imply S ` (A ⊃ B). Part (c) is straight bookwork; the candidates who got this question
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expounded proofs that were well expressed in their own way, i.e. not memorized from the
proof given in the lectures. Part (d) called for verification of a fixed point, which could
be done in various ways. There were some good solutions, which were by the method of
solving for a fixed point of the result of substituting a decomposition into a component, and
proving that instance of the Fixed Point Theorem; the third solution was a two-line proof
from the result in (c)(a third possibility is by direct derivation in GL).

C1.3: Analytic Topology

q1: This question was not popular, though there were some good solutions of it.

The most common errors in part (a), which was bookwork, were in the proof of second
countability from one of the other conditions: either a countable family of open sets was
defined such that every non-empty open set contained a member of this family, but was
not actually a basis; or a candidate basis was defined, but confusion involving the triangle
inequality meant that given a point x in an open set U , the basis element chosen was too
big by a factor of 2, and was not guaranteed to be contained in U .

There were many ingenious solutions to (b)(i), though the most obvious solution—ρ(x, y) =
min

(
d(x, y), ε

)
—did not occur to most people. Many had the right idea for (b)(ii). It should

be noted that although candidates were not required to demonstrate that their candidate
metric was a metric, they were required to show that it generated the product topology.

Many failed to spot the solution to (c)(ii): namely, that A needs to be countable; and
of these many failed to spot that (iii) is now trivial, for a space that is Lindelöf but not
separable cannot be metrisable by part (a). Perhaps this was due merely to shortness of
time.

q2: This question was attempted by all candidates.

Part (a) was generally well done.

Most people did (b)(i) and (ii) well. There were good attempts also at (iii); the most
common error was to fail to show that the basis of clopen sets exhibited, actually generated
the Tychonoff topology rather than some other.

All that is required for part (c) is to apply Stone duality to the previous parts of the
question. Quite a few failed to spot this (perhaps due to shortness of time), including some
that clearly understood category theory very well and knew that what part (c) was about
was defining a coproduct operator in the category of Boolean algebras.

q3: This was quite popular.

Part (a) was on the whole done well, though some people produced functions f for part (ii)
that were not continuous. One candidate produced a solution for part (v) which was slick,
economical, and did not use Urysohn’s Lemma: namely g = (DA−DB)/(DA+DB) (where
A and B are respectively the odd and even members of the sequence of yn).

There were some good solutions to (b)(i) and (ii), though some proofs of (iii) were defective
in various ways.

(b)(iv) caused significant difficulty and there were few correct solutions. One direction is
trivial (if X is compact then it is homeomorphic to βX, so if X is also metrisable then so
is βX). The other direction uses (a)(v) to show that no sequence on X can converge to a
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point of βX not in the range of the embedding of X in βX, so that βX can then not be
metrisable. One common error was to assert that X is always closed in βX (true if and
only if X is compact).

C1.4: Axiomatic Set Theory

Almost every candidate attempted questions 1 and 2 and the standard of answers was
generally high, with maybe a slight lack of accuracy hurting candidates.

Question 1 In part (b), for the requested example, a lot of correct classes but the justifi-
cations were often somewhat incorrect: sometimes it was not ensured that A ⊆ B although
absoluteness was only defined in this context; much more often one of the x and z did not
belong to A so that again the definition of absoluteness would not apply;

Only few candidates managed to make progress on (d) claiming erroneously that a formula
with ∀x ∈ P(y) . . . would be ∆0 (and sometimes they did so in (c) as well) or absolute as
long as A,B satisfy Powerset. However both a direct proof and a proof using the fact that
(x, r) is well-ordered if and only if it is order-isomorphic to an ordinal (with ∈) were given.

Question 2 In part (a), candidates were not always clear which facts they used (and thus
had to prove) and in particular where transitivity of the Vα and V is needed.

In part (b), candidates usually obtained full marks or very few marks with a wide variety of
mistakes e.g. choosing a yx for each x or assuming that {y : φ(a1, . . . , an, x, y)} was a set.

In part (c), again some very nice answers were given but the majority of candidates ‘guessed’
the wrong formula x 6∈ y ∧ x = {x}.
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C2.1: Lie Algebras

Almost all students attempted question 1 and 2.

Question 1: Many good solutions, thought surprisingly few candidates found the correct
approach to (d) using Lie’s theoreom to the solvable Lie algebra spanned by X and Y .

Question 2: Good solutions. For the last part most candidates guessed that any derivation
of g must send the ideals b and h to themselves, but few managed to prove it.

Question 3: Only one attempt on this question.

C2.2: Homological Algebra

The paper was of adequate difficulty, and there were no questions that I deemed either too
easy or too hard.

C2.3: Representation Theory of Semisimple Lie Algebras

No report.

C2.4: Infinite Groups

Question 1 This question was attempted by all candidates, with the largest number of
correct answers. Some candidates did not use an induction on the class of nilpotency. A
few did not understand that the main point of the last question was to show that the torsion
was a group. About half did not see that an important part of the argument was that the
torsion, when a subgroup, is characteristic, hence the torsion of a normal subgroup is itself
normal.

Question 2 This question was attempted by the least number of candidates. Possibly due
to the fact that residual finiteness is a less familiar notion. The second part, on the residual
finiteness of a rather simple wreath product, was not attempted by many, and despite the
fact that the questions almost led to the solution, the final answer has been provided by
very few candidates.

Question 3 This question was the second in terms of popularity. While the first and the
third part were well answered, in the second most candidates were able to prove that the
homomorphism from the quotient of the free group to the dihedral group is onto, but failed
to prove that it is one to one.

23



C2.5: Non-Commutative Rings

Question 1: This was a very popular question with good results. Part (d) was the hardest.
A common error was to try to use determinants, which only works in commutative rings.
No candidate spotted that it was proved in a problem sheet that a regular element of an
Artin ring is a unit, and of course Mn(D) is an Artin ring.

Question 2: Another very popular question. Part (c) was a common difficulty with many in-
correct applications of Jacobson’s theorem. Surprisingly few candidates managed to answer
(d) correctly.

Question 3: Few attempts but with good solutions.

C2.6 Introduction to Schemes

Q1 and Q2 were by far the most popular.

Q1 (c) Very few students gave a complete answer. The point is that f gives rise to a
morphism of rings φ : C[x] → C[x] and an α ∈ C such that the element φ(x − α) is not
contained in any prime ideal. Hence φ(x−α) is a non zero constant, from which the result
follows.

Q2 (b) Very few students gave a complete answer. One way to proceed is to show that each
point of S corresponds to an affine open subscheme and to use this fact to show that the
global sections functor on the category of quasi-coherent sheaves on S is exact. The result
then follows from Serre’s cohomological criterion of affineness.

Q2 (c) Very few students gave a complete answer. One way to proceed is to show that
the direct image functor f∗ from quasi-coherent sheaves on S to quasi-coherent sheaves
on T is exact. This may be seen from a computation on stalks (noticing that the stalks
vanish outside the image of f). One may then suppose that T is affine and apply Serre’s
cohomological criterion of affineness.

Q3 Was attempted by only a few students.

Q3 (b) (ii) Many students gave a correct answer, but very few justified their answer properly.

Q3 (c) (ii) Follows from Q3 (c) (i), because if H1(S, I) = 0 then H0(C,OC) is a field, which
is a contradiction.

C2.7 Category Theory

Question 1 was the most popular question, with some very good answers though no perfect
solutions. The other two questions attracted equal numbers of attempts; question 3 was
found easier by candidates who had mastered the material in the later part of the course.
It was pleasing that nearly all candidates were able to give good answers to at least the
more straightforward parts of two questions, but disappointing that almost nobody gave a
correct description of co-equalisers in the category of sets.
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C3.1: Algebraic Topology

Question 1: (b) (i) Note that CP2 is a manifold; no geometric computation is required. (ii)
The result follows from the Künneth theorem. (c) (i) There is no ring homomorphism that
reverses sign in top degree, therefore no orientation-reversing self-homeomorphism.

Question 2: (a) Note that specifying the degree of the attaching maps does not determine the
maps and therefore does not specify a CW structure. (b) (i) Though possible to compute
the relative cohomology using a long exact sequence, it is more direct and in this case
reliable to compute directly from the relative cell complex. (ii) Computing the cohomology
directly from a cell complex makes clear the generators of the cohomology groups, which
aids intuition in the following part. (c) (i) As in question 1, no geometric computation
is required, only induction using the manifold structure. (ii) This challenging part is best
approached by considering the reduction mod 2 map, with careful attention to which maps
are and are not isomorphisms, informed by part (b).

Question 3: (b) (i) The cohomology groups could be those of a manifold, but the ring
structure cannot be that of a manifold. (ii) Mayer–Vietoris determines the cohomology
groups of the connect sum. (c) (ii) Recalling the graded commutativity of the cohomology
ring helps nail down the ring structure.

C3.2 Geometric Group Theory

Q1 This was a basic question about residually finite groups, presentations and algorithmic
problems. All students attempted this. The substantial part of 1.a was the proof that
residually finite groups are Hopf and most students gained full marks on this.

Parts b i, ii were generally well done. In part iii some candidates gave a very vague de-
scription of the enumeration procedure and marks were taken off. Part iv was the most
challenging and most students made some mistakes when explaining the procedures that run
in parallel. Some assumed that the word problem is solvable while others did not explain
how they check that a homomorphism is onto. Part v was generally well done.

Q2 This was a question on amalgamated products and actions on trees. In part a some
students gave the definition of the fundamental group rather than a presentation as it was
required. In part b most candidates did well in the first part but several were confused in
the last part trying to use for example the Cayley graph instead of the quotient graph of
groups provided by the action.

Part c was generally done well but a common mistake was to assume that if there is an
edge labelled by Z in the quotient graph of groups then the group splits over Z (i.e. they
did not rule out trivial splittings where both an edge and a vertex are labelled by the same
group).

Q3 This question was on the last part of the course dealing with quasi-isometries and
hyperbolic groups.

Part a.i was well done. In part ii many students used the correct diagram but failed to give
a complete argument using thin triangles. Many students saw how to apply a.ii and gave
a complete solution of b.i. Some students managed to do b.ii and some found u, v but did
not prove the inequality and got partial credit. Nobody managed to do b.iii.
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C3.3: Differentiable Manifolds

Question 1: Attempted by most candidates. Part (c) had quite a lot of things to cover and
even candidates who knew what they were doing tended to lose a few marks by missing
things out (e.g. by not explaining why X is Hausdorff, and second countable, which is why
f-1(y) was supposed finite or countable).

Part (d) was done poorly. The answer is that f is not a covering map (because of behaviour
over 1 in Y as 0 is not in X), but it is a local diffeomorphism. You could have inferred the
first from the question just on logical grounds: as (c) shows that covering maps are local
diffeomorphisms, if f were a covering map, then there would be no point in the examiners
also asking if f is a local diffeomorphism. But almost everyone said f is a covering map, and
a surprising number did not answer the question about local diffeomorphisms.

Question 2: (a),(b) were bookwork and done well. Candidates found the first parts of (c),(d)
difficult ((c)(i) needed an algebraic trick which most did not spot, though many got part
marks; in (d) I was disappointed by how few could explain that S1-invariant k-forms α on
S1 x Y are d x ∧β + γ for β, γk− 1, k-forms on Y ), but the second parts of both were easy
marks for those that kept their heads.

Question 3: The least popular question. For (a), some candidates did not know the definition
of orientations on manifolds in terms of orientations on tangent spaces. Part (d) was difficult,
and candidates who gave up and did not attempt it received at most 13 marks.

C3.4: Algebraic Geometry

Almost all candidates chose exercise 1, after which as second option exercise 3 was about
twice as popular as exercise 2.

Exercise 1: (b) almost all candidates did not take the closures of the C-sets, confusing the
condition of being relatively closed in the qpv X with being closed in the ambient projective
space; (c) surjectivity seems to have stumped many candidates even though it was clear due
to there being a quotient map on coordinate rings for subvarieties; (d) frequent mistake:
candidates used isomorphisms f,g to identify the qpvs V,W with affine varieties A,B, and
then took A intersect B, but A intersect B is in general unrelated to V intersect W. Only
very few candidates used the map (fxg) applied to ((VxW) intersect (Diagonal)), and the
fact that (fxg)(Diagonal) is closed in AxB.

Exercise 2: (a) candidates often wrote the definition of tangent space for an affine variety in
terms of a vanishing set, rather than the intrinsic definition needed for a projective variety
or a qpv; (d) candidates sometimes did not see that one had to consider the Pluecker
embedding, in order to justify why the map was a morphism.
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Exercise 3: (a) many candidates did not explain to which algebra g,h belong, when writing
f = g/h, in the definition of regular function; (b) a lot of confusion by candidates caused
by using the coordinates xj (with xi omitted), rather than xj/xi on the affine charts Ui =
(xi not zero). Candidates erroneously thought that the function was therefore a polynomial
in the xj on Ui independent of xi, and therefore the polynomial was independent of all
coordinates xi, hence constant! (c) Some candidates stated what algebras are involved,
but without saying how the equivalence maps objects and morphisms; (d) most candidates
forgot that the Veronese embedding allows one to prove that Pn(F ) is affine (proved in the
notes, and arises in a homework exercise).

C3.5: Lie Groups

Question 1 This question was about Lie subgroups and subalgebras, with some links to
representations and maximal tori.

Most candidates were fine with the subgroup and subalgebra concepts, but some found
describing the decomposition of representations more tricky.

The last part (finding disconnected Abelian subgroup not contained in a maximal torus)
proved harder, as expected, but several candidates managed this successfully.

Question 2 This question was on representations of SU(2) and characters. This question
proved very popular, with most candidates producing good solutions. Most candidates were
fairly expert with characters and how to apply them, though not all were able to put all the
pieces together to get the quick proof of the final part (many did manage this, however).

Question 3 This question, on adjoint maps, Killing form and decomposition into root spaces,
was the least popular. The bookwork on Ad and ad was generally well done, and most
candidates were fine with the Killy form calculations. The final part required some insight
into root spaces and proved more challenging.

C3.7: Elliptic Curves

Question 1:

Part (a) was done quite well, although many candidates were happy to apply the Hasse
estimate directly at primes dividing the discriminant in (iii), and others laboured over
determining the group structure in (ii) rather than just observing there are only two groups
of order 4 and one can be easily ruled out. Part (b)(i) was done well, though sometimes the
methods used were lengthy. Only one student made progress in (b), spotting the connection
between the expression and the result of repeatedly applying the operator x

ddx to the power
series for 1/(1− x).

Question 2:

The bookwork in parts (a) and (b) was done well. Part (c) was original and harder, but a
number of students did this well, even completing it.
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Question 3:

The marks on this question were overall higher than the others, with several candidates
getting near full marks or full marks. Most students had a good idea what to do, as similar
questions will have been encountered in past examinations.

C3.8 Analytic Number Theory

Overall the exam seemed well-balanced, with a good spread of marks.

Question 1 This question was much less popular than the other two, although candidates
who did attempt it tended to do well. This is presumably because a large part was based on
bookwork of one of the harder parts of the course. There were slight mishaps with the final
rearrangement of terms in part (c) and balancing the error terms in part (d), but generally
most parts were competently answered.

Question 2 This question was popular, with a fairly wide spread of marks awarded. More
candidates had difficulty with part (a) than expected, but part (b) was almost uniformly
well-answered. Candidates who saw the main idea to swap the order of summation in (c)
generally answered well, but occasionally found difficulties with adequately handling error
terms. No candidate gave a perfect answer (showing analyticity) to part (d), but several
saw the main idea to separate the main term inside the partial summation step.

Question 3 This question was also popular, being attempted by almost all candidates.
The first three parts of the question were easier and generally correctly answered. Several
candidates had rather more difficulty answering part (d). Most were aware of the basic
strategy which should be adopted for (d)(i), but had difficulty adequately bounding each
error term. Part (d)(ii) was quite well answered, even by candidates who struggled with
the earlier part of the question.

C3.10: Additive and Combinatorial Number Theory

Q1. This question was on a part of the course that many students found hard, so I kept
to the basics. Even then, the attempts were quite poor, even at the bookwork. There were
no satisfactory attempts at part (b), which really only requires a small modification to the
proof of (a). Part (c) saw quite a few solutions, but also a good number of completely wrong
solutions, which is disappointing since consequences of the orthogonality relations such as
this were ubiquitous in the course and on the exercise sheets. Finally, very few candidates
made a correct attempt at (e), assuming that the bound they had stated for Gauss sums in
(c) applied without the restriction that q be coprime to a.

Q2. Attempts here were quite poor with the exception that quite a few students did well
on part (b). I was particularly disappointed that no student managed either (a) (ii) or (a)
(iii).

Q3. Subdivided marks have been annotated on the official solution. Unsurprisingly, this
was the most popular question, being on the second half of the course which the students
generally found easier. The bookwork was mostly well done and there were some easy marks
available for that. However, as soon as the question veered away from bookwork, candidates
found trouble. No candidate managed to construct (greedily) a subset of 1, .., n3 with no
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additive relations. And no candidate properly justified lifting from Z/qZto[q] so as to apply
Roth’s theorem, in the last part.

C4.1: Further Functional Analysis

There were some strong performances, but overall the cohort appeared to be rather less
well prepared than others in recent years.

Question 1. The general standard of the answers to this question was low. In part (a)
some candidates stated the wrong version of the Hahn-Banach Theorem, and a surprising
number struggled with part (ii). Part (b) was a minor variation of an exercise discussed
in one of the classes, but disappointingly there was not a single complete solution. Few
candidates made serious attempts at part (c), and those who did tended not to see how the
existence of Banach limits established in (b) could be used to answer part (ii).

Question 2. The bookwork in part (a) was on the whole handled competently. Part (b)
had appeared as a question on a problem sheet, and also on a recent past paper, but even
so it was pleasing to see how many of the candidates were comfortable with the relatively
intricate argument required here. Part (c)(i) received several good answers, but only one
candidate was able to see how exactly the result from part (b) could be used in part (c)(ii).

Question 3. Parts (a) and (b) attracted a number of high-quality answers, although some
candidates, alarmingly, came a cropper even in these early stages. Part (c) offered an
alternative approach, mentioned in passing during the lectures, to the spectral theory of
compact operators. The results were mixed. In part (d) candidates were generally able to
see how to make use of the FTC but nobody managed to produce a complete solution.

C4.3: Functional Analytic Methods for PDEs

The first question has been attacked by all candidates. In (b), many candidates do very well,
applying the extension scheme and Poincare-Sobolev inequality in the last stage. The first
part of (c) is based on the interpolation in Lp-spaces and the Gagliardo-Nireberg inequality.
It has been noticed by most of candidates. The second part of (c) is just technical and can
be done with the help of Young inequality.

Many students did the second question. In (b), the embedding of W 1,n into BMO is proved
easily if Poincare-Sobolev and then Hölder inequalities are applied. The most difficult part
of (c) is show that logarithm is in BMO. Nobody can finish (d) although the idea is the
same as in the proof of Hölder continuity: one needs to compare the mean value over balls
of a given radius with the mean value over balls of the double radius.

The third question was not popular among the candidates but was done very well by those
who did take this question.

C4.4 Hyperbolic Equations

Question 1: Part a) of the question was answered correctly by nearly everyone, however the book-
work parts b) and c) posed considerable difficulties for the candidates. The construc-
tion of the unique entropy solution in part d) was attempted by all the candidates,
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but everyone made a mistake at different stages and none succeeded in finding the
correct equation for the first shock curve. Some candidates got very caught up in
wrong computations and lost a lot of time here which was clearly lacking for the later
questions.

Question 2: All candidates struggled with the proof of the one dimensional Sobolev embedding in
part a)(i) of the question and the energy estimate in part a)(ii). Part b) was received
well; the candidates had in general a correct approach to the solution however some
did not make use of the a priori boundedness of the solution to conclude the argument.

Question 3: Part a)(i) of the question did not pose any difficulties, the other parts were not
attempted probably because of lack of time.

C4.6 Fixed Point Methods for Nonlinear PDEs

Question 1: Part a) was very close to what was done during the lecture. Half of the
students answered it correctly, while the other half wrote the pieces but did not manage to
combine them in the correct way or to develop them fully. In part b) some students also
struggled. There were many ways to answer it, yet most attempted one done during the
lecture. Unfortunately, this was longer than the alternatives (and therefore, had more places
where students could make mistakes and took more time that could have been useful later).
Part c) seemed to be understood conceptually, but it had some technical differences to things
done during the lecture. Many students failed to realize and tackle those particularities in
the right way. Only one student noticed that C was unbounded, and then still tried to use
the wrong version of Schauder’s theorem.

Question 2: Part a) was very easy, yet some students either forgot the dependency of f
on u, or got confused with the Sobolev spaces. Part b) was received well, although most
of students took the long way to prove compactness, instead to appeal to the results we
studied in the lecture. In doing so, they missed some important details. For example, they
used Dominated Convergence theorem, without checking all assumptions.

In part c)(i), many students struggled to use the weak maximum principle. Part c)(ii) was
full of small computation mistakes that might indicate that although students understand
the overall concepts, they needed more practice with this type of calculations. Part c)(iii)
Was straight forward and in general students had a clear idea of what to do. However,
most of them appealed to the compactness shown in part b) without noticing that f had
different properties in this context.
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Question 3: This was the less attempted question. Part a) was bookwork and well received.
In part b) none of the students did what the sample solution suggested and used integration
by parts to pass the derivatives to v. nevertheless, they applied all arguments correctly to
justify their choice. It should be noted that there were again some minor computation
mistakes. Part c) was wrongly answered by students, who wrote a functional depending on
u and v (instead of only on u). All students struggled with part d). Part e) showed again
that students lacked practice with norms and bound computations. Nevertheless, in general
they identified what to do.

C4.8 Complex Analysis: Conformal Maps and Geometry

Q1: This is by far the most popular question attempted by all candidates. Part (b)(i)
turned out to be very hard despite being a minor modification of a problem from the first
problem sheet. Very few students completed part (c) which is very similar to the proof of
the Riemann mapping theorem.

Q2: In part (b) all students failed to realize that the family of the curves is not symmetric
with respect to re-labelling and the problem is not the same as the one from the problem
sheet. No one noticed that the problems in parts (b)(i) and (b)(ii) are equivalent to each
other.

Q3: This is the easiest question, the main difficulty was in parts (c)(ii)-(iii) where one was
supposed to use the growth theorem.

C5.1: Solid Mechanics

Q1: All students tried this question but only a few manage to do it well. The question was
mostly technical and many students had difficulties with algebraic manipulation. The first
15 marks were mostly straightforward matrix products. Some students showed a decent
understanding on the basics of nonlinear elasticity. Few students manage to complete the
last part that required a better understanding of the material.

Q2: This question was probably the hardest in terms of theoretical concepts but easy in
terms of manipulation. Unfortunately, none of the students went further than the first few
steps. It was disappointing to see that many students could not give the correct physical
dimensions of the quantities appearing in the Cauchy equation (an easy 5 marks).

Q3: Similarly to the first question, almost all students tried this question. Again, many
students had difficulties with tensorial manipulation. A few students showed good under-
standing of the material and could easily obtain the answer (an easy 3 marks).
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C5.2: Elasticity and Plasticity

Question 1 This was the least popular question and was generally not answered well.
Several students erroneously set the displacement to zero at x = 0 instead of the stress,
despite the required boundary conditions being clearly set out in part (a). Most candidates
were able to derive the relations for the reflection angles in part (b), but almost none gave
a convincing argument for the form of β when sinα > cs/cp. In part (c), a combination of
incorrect boundary conditions and faulty algebra defeated almost everyone, and only one
candidate made any headway whatsoever with part (d).

Question 2 This question was relatively popular and attracted several good solutions.
The bookwork in parts (a) and (b) was generally handled well, although there was some
sloppy manipulation of inequalities. The example in part (c) was similar to problems done
in lectures, and most who attempted it got the required equation relating δ and s. Almost
no-one convincingly completed part (d), which required a bit of thought about the mutual
reaction force between the two strings.

Question 3 This was the most popular question, and the attempts covered a wide spread
of marks. Most candidates managed the bookwork in part (a), albeit sometimes laboriously
and with some uncertainty about the direction of the inequality. In part (b), very few
realised that the identity from (i) can be used to simplify the following calculations. Several
candidates were confused about the sign convention for the pressure (for example setting
τrr = +Pin at r = a), and there was also some ambiguity about the sign of the square root
in the Coulomb condition. In (iii), very few candidates successfully formulated a differential
equation for the stress and thus solved for s.

C5.5: Perturbation Methods

Q1 Overall this was very popular and implemented well in the earlier stages. However, errors
did accumulate over the course of the question in many solutions and the Van Dyke matching
challenged every candidate. In particular, while the best answers clearly understood the
principles and were very close to a perfect solution, errors generally prevented a perfect
score.

Q2 This question was also popular and the first part was implemented very well. The steep-
est descent part of the question was found to be more challenging than perhaps expected
though there were a number of very high scores. In a number of cases with lower scores
and extensive answers to Q1, it appeared that time may have been a factor. Nonetheless,
not observing the final integral could be written in terms of a complex exponential in the
integrand did increase the work of a number of students and a failure to evaluate only the
contour integrals required for the final answer also limited progression in the question.

Q3 This was not a popular question. When attempted, most attempts gathered all marks
in the earlier parts. The latter parts were found to be difficult though the better answers
clearly saw how to conceptually tackle the problem, even if slips prevented full solutions.
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C5.6: Applied Complex Variables

No report.

C5.7: Topics in Fluid Mechanics

As the exam was the first from a new lecturer, it was set slightly straightforwardly. The
marks were consequently at a high level, but I did not get the sense that these were inflated
in terms of student capability. The most popular questions were 1 and 2, with only 2 out
of 17 scripts attempting question 3 on rotating flows. Question 2 was probably too easy,
while the awkward part 1(d) defeated most.

C5.9: Mechanical Mathematical Biology

Q1 Overall this was very popular and implemented well, with a suitable spread of marks
as the candidates found each part harder than the next.

Q2 This question was extremely popular, answered by essentially all candidates, but was
found to be difficult. In particular, the calculus of variations proved to be more challenging
than perhaps expected though once more there was a good spread of marks to differentiate
the candidates.

Q3 This was a surprisingly unpopular question. Essentially all attempts cleared the prelim-
inary parts of the exam, which was a detailed piece of bookwork requiring careful attention
to the lecture notes in this part of the course. From the candidates that had navigated this
part of the question, many noticed an analogous strategy could be employed for the final
parts of the question and typically produced very good attempts.

C5.11: Mathematical Geoscience

Q1: This question was quite popular and attempted by the majority of candidates. Part
(b) was answered too descriptively by some, who failed to give approximate solutions to the
model. Quite a few people wrote down the nonlinear ODE satisfied by the temperature for
t = O(δ) but did not notice that the initial condition had it in the stable steady state of
this equation so that the solution was simply constant. Parts of (c) were done well, but no
candidates appeared to gain a full understanding of what the phase plane looked like.

Q2: This question was the most popular but also found to be the most challenging. Most
candidates picked up marks in part (a), although the non-dimensionalisation was very con-
fused in many cases. The first part of (b) was straight from an example given in lectures,
but proved more challenging than anticipated; many candidates failed to realise that the
only characteristics with useful information on all came from the origin. The final bed
profile was found by only a couple of candidates, a common difficulty being to realise that
erosion only starts at each given x when the flood front passes. Part (c) was challenging
and was not completed by anyone, though there were some valiant attempts.
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Q3: This question was attempted by many fewer candidates but actually turned out to be
the highest scoring. Most people who attempted the question got most of part (a) and (b),
though many put the glacier surface at z = h in part (b) which led to difficulties deriving
the correct expression for τb. The derivation of the condition for stability in (c) proved
surprisingly challenging. A common misconception in the last part of (d) was to say that
the steady state loses stability at λc, rather than that it simply disappears entirely (so there
is no ice sheet).

C5.12: Mathematical Physiology

The most popular question was 2, followed by 3 and then 1. The straightforward parts were
generally well done, but the slightly challenging parts were, well, challenging.

C6.1: Numerical Linear Algebra

Most candidates attempted question 1 on matrix factorizations, with a range of scores. Few
saw the point of the final part (f) where in particular calculation of the smallest singular
value was only correctly done by very few. Too many candidates were happy to query that
L1U1 = L2U2 implies L1 = L2, U1 = U2 in part (c) without adequate proof.

Question 2 on stationary (simple) iteration was attempted by just over half of the candidates
with a range of scores including one full marks. In the final part (c) too many candidates
were too quick to introduce B−1 thereby making in almost impossible to apply simple
diagonal dominance arguments.

Question 3 on Krylov subspace methods was attempted by under half of the candidates,
but attracted (in general) higher marks. Again the final part (c), though well done by some,
caused difficulty.

C6.2: Continuous Optimisation

No report.
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C6.3 Approximation of Functions

The average raw marks on problems 1, 2, and 3 were 18.9, 20.4, and 15.8. Possibly the exam
was easier than average but I don’t think this is the whole explanation of these relatively
high marks for I was also struck with the good quality of all but one of the papers.

Problem 1. Almost everybody did this problem. Most parts had good results except the
second half of part (d), worth 5 marks, concerning continuity of the best approximation
operator. Only one or two students managed this.

Problem 2. About half the students did this problem. They did reasonably well, with part
(e), concerning the notion of “Laurent order of accuracy,” proving the most challenging.

Problem 3. About half the students did this problem. I was surprised how well they did on
parts (a)–(d) — they must have studied these formulae well! I believe nobody got part (e),
showing that a certain rational interpolant has no poles in [−1, 1]. It’s an easy argument
but we hadn’t done it in the lectures, reading, or classes.

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question revealed a good spread of abilities across the students who attempted
it. In Q1 (a) (iii), surprisingly few students succeeded in sketching the basis functions for
various finite elements in one dimension. In Q1 (b) (i) almost all students who attempted the
question successfully calculated the basis functions, but few realised for (ii) that the values of
the shared degrees of freedom at vertices were not sufficient to constrain the function value,
and hence the finite element is not C0(Ω)-conforming. In Q1 (c), many students succeeded
at the unseen task of proving unisolvence in (i) and establishing relations between the finite
element subspaces in (ii), but most struggled to identify a suitable function in (iii).

Q2: This question was very popular, with every candidate attempting it. Most did very
well in Q2 (a), as the material is familiar from past examinations. Q2 (b) was unseen, and
succeeded in distinguishing the strongest students. Surprisingly few students realised that u
is vector-valued, and hence one must take a dot product of the equation with a vector-valued
test function v in (b) (i). Even fewer could successfully apply integration by parts to move
the gradient onto the test function. Some students confused the operator −graddiv with
−divgrad, and proposed the familiar bilinear form for the Laplacian. Remarkably, every
candidate claimed to prove that their bilinear form was an inner product, even when the
(incorrect) bilinear form was not in fact an inner product. Strangely, in Q2 (b) (ii) several
students ignored the hint, while others did not use the properties of the finite element in
question, neglecting to note that the surface integral terms over each cell must cancel due
to continuity of the normal component of the function.

Q3: This question was for the most part well-answered. Students who had grasped the
central convergence theorems of the course did well in Q3 (a), which was identical to a
question on a problem sheet. Q3 (b) was in general well-answered, with minor slips in
the definition of H2

0 (Ω) or giving a suitable finite element (several candidates proposed
the Hermite element, which is not C1(Ω)-conforming in two dimensions). The relative
familiarity of (a) and (b) were compensated by the difficulty of (c), which required the
use of the Sobolev embedding theorem (or at least knowledge of the integrability of H1(Ω)
functions in three dimensions).
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C7.4: Introduction to Quantum Information

Question 1
Well done question. Some students struggled with part (b) and the calculations in part (d).
Many students failed to provide physical interpretation of the results in part (g).

Question 2
This was the most popular question on the paper. Parts (a) and (b) were standard problems
and did not pose much difficulty. Some students failed to spot the linearity of equations
in part (c). In part (d) most marks were lost for not estimating the imaginary part of the
trace. Good attempts at part (e).

Question 3
The bookwork in parts (a) and (b) caused no problems. Most marks were lost in parts (c)
and (e).

C7.5: General Relativity I

Q1: This was seen to be the hardest question on the paper and was the least popular. Parts
a to c were mostly bookwork and well done. Candidates had difficulty proving the Bianchi
identity for the field strength in part d. Most candidates were unable to complete part f,
and there were no correct answers for part g.

Q2: Parts a and b were mostly well done, except for a few algebraic errors. Some candidates
used the Euler–Lagrange equations for part a but did not state why this was equivalent to
varying the action. In part d, a handful of candidates were able to use the conserved
quantities to identify the new coordinates, though few correctly identified the region of
(T,X) plane covered by the old coordinates.

Q3: This was the easiest question on the paper and attracted the most attempts. Candidates
lost marks in part a by not specifying spherical symmetry and in part b by not showing that
the Lagrangian is constant on the geodesic. Part d was attempted by many but completed
correctly by few. Parts e, f and g were well done by those who attempted them.

C7.6: General Relativity II

Question 1: The question was attempted by less than half of the candidates. Part a) was
done very well in general. Most of the candidates wrote down the correct definitions. In part
b), many candidates explained well why the metric given in the problem is the most general
form of the spherically symmetric metric. Several candidates attempted the coordinate
transformations but most of them could not reach the conclusion except for few candidates.
In part c), most of the candidates only showed B = B(r). None of the candidates proved
that the equation also satisfies Brr = 0.
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Question 2: It is pleasing to see most of the candidates can compute Christoffel symbol of
a spherically symmetric metric. It is also observed that most of the students had difficulty
with straightforward but long calculations, for example, computing the components of Ricci
tensor of Vaidya metric. Most of the students had managed to compute just only one
non-vanishing component of Ricci tenor, although the question was meant to calculate
all components. Also, all examinees taking question 2b) had not shown the vector field
tangent to the out-going energy flux in Vaidya space-time obeys null geodesic equation.
Some students had not understood the definition of a space-like hyper-surface properly, as
attempts were made to show that the normal vector of such a hyper-surface is space-like.

Question 3: Nearly all students attempted this question. Most students did well on the
bookwork parts a) and b). Many candidates came up with a correct strategy to solve
part c), but nearly everyone struggled with the longer computation that requires correct
manipulation of the metric components of Kerr. The first part of d), finding λ+ such that
η+ is null on the horizon r = r+, was worked out correctly by a good proportion of the
candidates, however nearly no one showed that η+ is time-like for all r > r+. Finally, part
e) seemed easier again for most of those candidates who attempted it and most of those
scored good points here.

C8.1: Stochastic Differential Equations

Question 1 was the most popular, every candidate attempted it. Most candidates realised
that Optimal Stopping can be used in 1b, and most managed to solve 1(c)(i); however,
few made progress on 1(c)(ii). Questions 2 and 3 were approximately equally popular.
While nearly everybody made progress on Question 2(b)(i) many forgot to apply BDG,
and 2(b)(ii) turned out to give many candidates trouble but was needed to solve 2(c). For
Question 3, the most common mistake was to try to apply Girsanov (this is not in itself
wrong but does not help in solving the question); few realised that refining the filtration
with Bd simplifies the conditional expectations.

C8.2: Stochastic Analysis and PDEs

Most candidates produced good answers to most parts but there were still a couple that
struggled to get beyond the basic bookwork.

Question 1: This question was attempted by all candidates. The standard bookwork was
generally well done as well as the properties of the resolvent. For the final part, many knew
what the domain of reflected Brownian motion should be but were unable to prove it.

Question 2: This was also a very popular question and saw a wide range of marks. No
candidate was able to correctly state the conditions for the convergence of a sequence of
continuous time Markov chains to a diffusion. The convergence part was mainly well done,
though a few candidates used the discrete time Theorem and ended up with the wrong
diffusion term. There were a number of good attempts at the final part, with most able to
see what the conditions for equilibrium were.

Question 3: The final question was attempted by few people and none managed to get all
the parts out. The first two parts were bookwork. The last part proved challenging.
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C8.3: Combinatorics

Question 1 This was the most popular question on the paper. Candidates generally
answered the bookwork quite well in (a) and (b), although many forgot the easier direction
of (b). There were two different solutions given to (c), one via Dilworth’s theorem and
the second more directly combinatorial. Few students verified that the poset axioms were
satisfied when using Dilworths theorem in (c) or (d)(i). Lastly, only a small number of
students found a family B ⊂ J as in (d)(ii) – the smallest example occurs with |B| = 5
where ints(B) = disj(B) = 2.

Question 2 Part (a) was answered essentially perfectly by most candidates, being book-
work. Relatively few solved (b) though, which was surprising given it was quite a direct
application of the Sauer–Shelah theorem. Question (c) was well answered, being a mixture
of bookwork and problem sheet material. Some candidates ignored the instruction to deduce
LYM from the two families and gave different proofs. A small number of students obtained
the upper bound in (d)(i) using that if A shatters S then 2|S| ≤ |A| and Sperner’s theorem.
A handful gave a construction for (d)(ii), although some gave useful ideas.

Question 3 Both (a) and (b) were mostly answered correctly, with some small details
missing in (a)(i) (why restricting pairs {A,Ac} is enough) and (b) (why we can assume a
t-intersection exists in A). Candidates seemed to find (c) quite difficult – some got partial
marks for the case s = 2, but no one completely solved this part (a ‘degrees of freedom’
argument similar to (b) was possible). About half of the students spotted the trick that
allowed the Modular FW in (d) to be used to solve (e) – a similar idea was used in a lemma
in the proof of the Borsuk counterexample in the notes.

C8.4 Probabilistic Combinatorics

Question 1 was on the difficult side, although it functioned well in terms of generating a
spread of marks. Part (a) was mostly well done. You can write the bookwork proof but
with significantly simpler formulae in the special case - or (as most did) write the bookwork
proof for general p and then take p = 1/2. The second half of (b) caused trouble for most.
(c) is very close to a standard problem sheet question and was mostly (but not always) OK.
(d) was not well done.

Question 2 was on the easy side, with most marks ending up similar. In (b) the hard part is
to explain the aut(H) factor. In (c) some candidates failed to use parts (a) and (b), starting
from scratch. Many candidates missed that a 1-edge overlap does not cause dependence in
this context. The point of (d) is that pairwise independence is not the same as independence
as a set of events. But showing that the events are not independent as a set does not imply
that the distribution isn’t binomial; to get full marks this needs to be shown by, e.g., noting
that we can’t have all but one triangle monochromatic. One candidate correctly pointed
out that the formula in (b) is incorrect if H has 0 edges, gaining a bonus mark.

Question 3 was only attempted by a few candidates and was in general not very well done.
Part (b) in particular turned out to be difficult. The key idea is to observe (with a calculation
to back it up!) that two large components of G are very unlikely not to be joined by an
edge of H. Overall, this topic (the phase transition) is around 1/4 of the course, so one
should expect a question on it in most years!

38



Statistics Units

Reports on the following courses may be found in the Mathematics and Statistics examiners’
report.

SC1 - Stochastic Models in Mathematical Genetics SC2 - Probability and Statistics for
Network Analysis SC4 - Advanced Topics in Statistical Machine Learning SC5 - Advanced
Simulation Methods SC6 - Graphical Models SC7 - Bayes Methods SC9 - Interacting Particle
Systems SC10- Algorithmic Foundations of Learning

Computer Science

Reports on the following courses may be found in the Mathematics and Computer Science
examiners’ report.

Quantum Computer Science Categories, Proofs and Processes Computer Animation

F. Names of members of the Board of Examiners

• Examiners:
Prof. M Kim (Chair)
Prof. G Chen
Prof. H Oberhauser
Prof. P Dellar
Prof. M Lackenby
Prof. R Jozsa (External)
Dr. J Woolf (External)

• Assessors
Prof. Samson Abramsky
Dr Vinayak Abrol
Prof. Konstantin Ardakov
Dr Anthony Ashmore
Prof. Ruth Baker
Prof. Charles Batty
Dr Philip Beeley
Prof. Dmitry Belyaev
Prof. Julien Berestycki
Dr Lukas Brantner
Prof. Helen Byrne
Prof. Coralia Cartis
Prof. Jon Chapman
Dr Sam Chow
Prof. Dan Ciubotaru
Prof. Samuel Cohen
Prof. Vassilios Dallas
Prof. Andrew Dancer
Prof. Xenia de la Ossa

39



Dr Jamshid Derakhshan
Prof. Chris Douglas
Prof. Cornelia Drutu
Prof. Artur Ekert
Prof. Alison Etheridge
Prof. Patrick Farrell
Prof. Victor Flynn
Prof. Andrew Fowler
Prof. Eamonn Gaffney
Prof. Martin Gallauer
Dr Kathryn Gillow
Prof. Alain Goriely
Prof. Ben Green
Prof. Peter Grindrod
Prof. Ben Hambly
Prof. Raphael Hauser
Dr Matthew Hennessy
Dr Andre Henriques
Dr Samuel Heroy
Prof. Ian Hewitt
Dr Chris Hollings
Prof. Samuel Howison
Prof. Peter Howell
Prof. Ehud Hrushovski
Dr Daniel Isaacson
Prof. Dominic Joyce
Prof. Peter Keevash
Prof. Frances Kirwan
Prof. Kobi Kremnitzer
Dr Heeyeon Kim
Prof. Minhyong Kim
Dr Florian Klimm
Dr Robin Knight
Prof. Marc Lackenby
Prof. Renaud Lambiotte
Prof. Alan Lauder
Dr Eoin Long
Dr Michael Lubasch
Prof. Terry Lyons
Prof. Philip Maini
Prof. Lionel Mason
Prof. James Maynard
Prof. Kevin McGerty
Dr Andrew Mellor
Prof. Derek Moulton
Prof. Andreas Muench
Prof. Vidit Nanda
Dr Yuji Nakatsukasa

40



Prof. Luc Nguyen
Prof. Nikolay Nikolov
Prof. Harald Oberhasuer
Prof. Jan Obloj
Dr Neave O’Cleary
Dr David O’Sullivan
Prof. James Oliver
Dr Yi Pang
Prof. Panos Papazoglou
Prof. Ebrahim Patel
Prof. Jonathan Pila
Prof. Hilary Priestley
Prof. Zhongmin Qian
Prof. Oliver Riordan
Prof. Alex Ritter
Prof. Damian Rossler
Dr Ricardo Ruiz-Baier
Prof. Melanie Rupflin
Prof. Tom Sanders
Prof. Alex Scott
Dr David Seifert
Prof. David Seregin
Dr Jan Sbierski
Prof. James Sparks
Dr Daniel Straulino
Dr Rolf Suabedissen
Prof. Balazs Szendroi
Prof. Jared Tanner
Prof. Nick Trefethen
Dr Carolina Urzua Torres
Dr Richard Wade
Prof. Andy Wathen

41


